Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.24.22271445

ABSTRACT

Background Heterologous boost vaccination has been proposed as an option to elicit stronger and broader, or longer-lasting immunity. We assessed the safety and immunogenicity of heterologous immunization with a recombinant adenovirus type-5-vectored COVID-19 vaccine (Convidecia) and a protein-subunit-based COVID-19 vaccine (ZF2001). Methods and Findings We did a randomized, observer-blinded, placebo-controlled trial in healthy adults previously received one dose of Convidecia. Participants were randomly assigned (2:1) to receive either ZF2001 (vaccine group) or a trivalent inactivated influenza vaccine (TIV) (placebo group) at either 28-day or 56-day intervals. For both regimens, all participants received the 2nd injection with ZF2001 at 4 months after a dose of ZF2001 or TIV, with three-dose schedules of Convidecia/Convidecia/ZF2001 at day 0, day 28 and month 5 (referred to as CV/ZF/ZF (D0-D28-M5)) and CV/ZF/ZF (D0-D56-M6), and two-dose schedules of CV/ZF (D0-M5) and CV/ZF (D0-M6). The primary outcome was the geometric mean titer (GMT) of the neutralizing antibodies against live SARS-CoV-2 virus 14 days after each boost vaccination. The safety outcome was 7-day reactogenicity, measured as solicited local or systemic adverse reactions after each vaccination. Between April 7, 2021, and May 6, 2021, 120 participants were enrolled, among whom 60 were randomly assigned to receive ZF2001 (n=40) or TIV (n=20) at a 28-day interval, and 60 were randomly assigned to receive ZF2001 (n=40) or TIV (n=20) at a 56-day interval. 113 (94.2%) participants received the 2nd injection with ZF2001 4 months after a dose of ZF2001 or TIV. A total of 26 participants (21.7%) reported solicited adverse events within 7 days post boost vaccinations, and all the reported adverse reactions were mild . Among participants receiving ZF001 as second dose, the GMTs of neutralizing antibodies increased to 58.4 IU/ml (42.8-79.8) in 0-28 regimen, and to 80.8 IU/ml (53.1-122.9) in 0-56 regimen at 14 days post first boost dose. The GMTs of neutralizing antibodies increased to 334.9 IU/ml (95% CI 230.4, 486.9) in C/Z/Z (D0-D28-M5) regimen, and 441.2 IU/ml (260.8, 746.4) in C/Z/Z (D0-D56-M6) regimen at 14 days after the third dose. Two-dose schedules of CV/ZF (D0-M5) and CV/ZF (D0-M6) induced comparable antibody level comparable with that elicited by three-dose schedules, with the GMTs of 282.9 IU/ml (142.5, 561.8) and 293.9 IU/ml (137.6, 627.9), respectively. Study limitations include the absence of vaccine effectiveness in real-world, and current lack of immune persistence data and the neutralizing antibodies to Omicron. Conclusions Heterologous boosting with ZF001 following primary vaccination of Convidecia is safe and more immunogenic than a single dose of Convidecia. These results support flexibility in cooperating viral vectored vaccines and recombinant protein vaccine. Trial Registration ClinicalTrial.gov NCT04833101


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.04.361576

ABSTRACT

The COVID-19 pandemic is a widespread and deadly public health crisis. The pathogen SARS-CoV-2 replicates in the lower respiratory tract and causes fatal pneumonia. Although tremendous efforts have been put into investigating the pathogeny of SARS-CoV-2, the underlying mechanism of how SARS-CoV-2 interacts with its host is largely unexplored. Here, by comparing the genomic sequences of SARS-CoV-2 and human, we identified five fully conserved elements in SARS-CoV-2 genome, which were termed as "human identical sequences (HIS)". HIS are also recognized in both SARS-CoV and MERS-CoV genome. Meanwhile, HIS-SARS-CoV-2 are highly conserved in the primate. Mechanically, HIS-SARS-CoV-2 RNA directly binds to the targeted loci in human genome and further interacts with host enhancers to activate the expression of adjacent and distant genes, including cytokines gene and angiotensin converting enzyme II (ACE2), a well-known cell entry receptor of SARS-CoV-2, and hyaluronan synthase 2 (HAS2), which further increases hyaluronan formation. Noteworthily, hyaluronan level in plasma of COVID-19 patients is tightly correlated with severity and high risk for acute respiratory distress syndrome (ARDS) and may act as a predictor for the progression of COVID-19. HIS antagomirs, which downregulate hyaluronan level effectively, and 4-Methylumbelliferone (MU), an inhibitor of hyaluronan synthesis, are potential drugs to relieve the ARDS related ground-glass pattern in lung for COVID-19 treatment. Our results revealed that unprecedented HIS elements of SARS-CoV-2 contribute to the cytokine storm and ARDS in COVID-19 patients. Thus, blocking HIS-involved activating processes or hyaluronan synthesis directly by 4-MU may be effective strategies to alleviate COVID-19 progression.


Subject(s)
Respiratory Distress Syndrome , Pneumonia , Severe Acute Respiratory Syndrome , Dissociative Identity Disorder , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL